Car issues - black smoke

). In turn, these originated from the Gaulish word karros (a Gallic chariot). The Gaulish language was a branch of the Brythoic language which also used the word Karr; the Brythonig language evolved into Welsh (and Gaelic) where '

Car issues - black smoke best oil for Isuzu

Car - etymology

The word "car" is believed to originate from the Latin word carrus or carrum ("wheeled vehicle"), or the Middle English word carre (meaning cart, from Old North French). In turn, these originated from the Gaulish word karros (a Gallic chariot). The Gaulish language was a branch of the Brythoic language which also used the word Karr; the Brythonig language evolved into Welsh (and Gaelic) where 'Car llusg' (a drag cart or sledge) and 'car rhyfel' (war chariot) still survive.1112 It originally referred to any wheeled horse-drawn vehicle, such as a cart, carriage, or wagon.1314 "Motor car" is attested from 1895, and is the usual formal name for cars in British English.3 "Autocar" is a variant that is also attested from 1895, but that is now considered archaic. It literally means "self-propelled car".15 The term "horseless carriage" was used by some to refer to the first cars at the time that they were being built, and is attested from 1895.16

The word "automobile" is a classical compound derived from the Ancient Greek word autós (?????), meaning "self", and the Latin word mobilis, meaning "movable". It entered the English language from French, and was first adopted by the Automobile Club of Great Britain in 1897.17 Over time, the word "automobile" fell out of favour in Britain, and was replaced by "motor car". It remains a chiefly North American usage.18 An abbreviated form, "auto", was formerly a common way to refer to cars in English, but is now considered old-fashioned. The word is still used in some compound formations in American English, like "auto industry" and "auto mechanic".

Źródło: https://en.wikipedia.org/wiki/Car#Etymology


The necessary high voltage

The necessary high voltage, typically 10,000 volts, is supplied by an induction coil or transformer. The induction coil is a fly-back system, using interruption of electrical primary system current through some type of synchronized interrupter. The interrupter can be either contact points or a power transistor. The problem with this type of ignition is that as RPM increases the available of electrical energy decreases. This is especially as problem since the amount of energy needed to ignite a more dense fuel mixture is higher. The result was often a high rpm misfire.

Capacitor discharge ignition was developed. It produces a rising voltage that is sent to the spark plug. CD system voltages can reach 60,000 volts.19 CD ignitions use step-up transformers. The step-up transformer uses energy stored in a capacitance to generate electric spark. With either system, a mechanical or electrical control system provides a carefully timed high-voltage to the proper cylinder. This spark, via the spark plug, ignites the air-fuel mixture in the engine's cylinders.

While gasoline internal combustion engines are much easier to start in cold weather than diesel engines, they can still have cold weather starting problems under extreme conditions. For years the solution was to park the car in heated areas. In some parts of the world the oil was actually drained and heated over night and returned to the engine for cold starts. In the early 1950s the gasoline Gasifier unit was developed, where, on cold weather starts, raw gasoline was diverted to the unit where part of the fuel was burned causing the other part to become a hot vapor sent directly to the intake valve manifold. This unit was quite popular until electric engine block heaters became standard on gasoline engines sold in cold climates.20

Źródło: https://en.wikipedia.org/wiki/Internal_combustion_engine


2-stroke engines

2-stroke engines
Main article: 2-stroke engine

The defining characteristic of this kind of engine is that each piston completes a cycle every crankshaft revolution. The 4 processes of intake, compression, power and exhaust take place in only 2 strokes so that it is not possible to dedicate a stroke exclusively for each of them. Starting at TDC the cycle consist of:

Power: While the piston is descending the combustion gases perform work on it?as in a 4-stroke engine?. The same thermodynamic considerations about the expansion apply.
Scavenging: Around 75° of crankshaft rotation before BDC the exhaust valve or port opens, and blowdown occurs. Shortly thereafter the intake valve or transfer port opens. The incoming charge displaces the remaining combustion gases to the exhaust system and a part of the charge may enter the exhaust system as well. The piston reaches BDC and reverses direction. After the piston has traveled a short distance upwards into the cylinder the exhaust valve or port closes; shortly the intake valve or transfer port closes as well.
Compression: With both intake and exhaust closed the piston continues moving upwards compressing the charge and performing a work on it. As in the case of a 4-stroke engine, ignition starts just before the piston reaches TDC and the same consideration on the thermodynamics of the compression on the charge.

While a 4-stroke engine uses the piston as a positive displacement pump to accomplish scavenging taking 2 of the 4 strokes, a 2-stroke engine uses the last part of the power stroke and the first part of the compression stroke for combined intake and exhaust. The work required to displace the charge and exhaust gases comes from either the crankcase or a separate blower. For scavenging, expulsion of burned gas and entry of fresh mix, two main approaches are described: Loop scavenging, and Uniflow scavenging, SAE news published in the 2010s that 'Loop Scavenging' is better under any circumstance than Uniflow Scavenging.6

Źródło: https://en.wikipedia.org/wiki/Internal_combustion_engine